在这个比赛中,我们尝试了一系列的特征工程和模型融合,以提高模型的性能。在特征工程方面,我们加入了时间相关变量、平方项、立方项、比率、滚动SMA、滚动方差、PCA主成分、实发辐射的测试集预测值、NMF衍生变量、prophet等;在模型融合方面,我们尝试了神经网络模型、Xgboost模型、时间序列模型以及基于概率模型的融合。
Chang, Jinyuan, Bin Guo, and Qiwei Yao. 2018. “Principal Component
Analysis for Second-Order Stationary Vector Time Series.” *The Annals of
Statistics* 46 (5). <https://doi.org/10.1214/17-aos1613>.
Elsayed, Shereen, Daniela Thyssens, Ahmed Rashed, Hadi Samer Jomaa, and
Lars Schmidt-Thieme. 2021. “Do We Really Need Deep Learning Models for
Time Series Forecasting?” *arXiv Preprint arXiv:2101.02118*.
Izakian, Hesam, Witold Pedrycz, and Iqbal Jamal. 2015. “Fuzzy Clustering
of Time Series Data Using Dynamic Time Warping Distance.” *Engineering
Applications of Artificial Intelligence* 39: 235–44.
Kechyn, Glib, Lucius Yu, Yangguang Zang, and Svyatoslav Kechyn. 2018.
“Sales Forecasting Using WaveNet Within the Framework of the Kaggle
Competition.” *arXiv: Learning*.
Oord, Aaron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. 2016a. “Wavenet: A Generative Model for Raw Audio.” *arXiv
Preprint arXiv:1609.03499*.
Oord, Aaron van den, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt,
Alex Graves, and Koray Kavukcuoglu. 2016b. “Conditional Image Generation
with PixelCNN Decoders.” *Neural Information Processing Systems*.
Salvador, Stan, and Philip Chan. 2007. “Toward Accurate Dynamic Time
Warping in Linear Time and Space.” *Intelligent Data Analysis* 11 (5):
561–80.
Sprangers, Olivier, Sebastian Schelter, and Maarten de Rijke. 2022.
“Parameter-Efficient Deep Probabilistic Forecasting.” *International
Journal of Forecasting*.
Triebe, Oskar, Hansika Hewamalage, Polina Pilyugina, Nikolay Laptev,
Christoph Bergmeir, and Ram Rajagopal. 2021. “NeuralProphet: Explainable
Forecasting at Scale.” <https://arxiv.org/abs/2111.15397>.
Ying, ZhenZhe, Zhuoer Xu, Weiqiang Wang, and Changhua Meng. 2022.
“MT-GBM: A Multi-Task Gradient Boosting Machine with Shared Decision
Trees.” *arXiv Preprint arXiv:2201.06239*.